CALCULATION OF ISOKINETIC TEMPERATURE OF NON-CATALYZED HYDROLYSIS
 OF SUBSTITUTED 3-(N-METHYLCARBAMOYL)-1,3-DIPHENYLTRIAZENES

Oldřich Pytela, Miroslav Večeřa and Pavel Vetešník
Department of Organic Chemistry,
Institute of Chemical Technology, 53210 Pardubice

Received May 21st, 1980

Temperature dependence of kinetics of non-catalyzed hydrolysis of substituted 3-(N -methyl-carbamoyl)-1,3-diphenyltriazenes has been measured. An optimized calculation method has been suggested for calculation of the isokinetic temperature and the experimental data have been evaluated. In all the cases it has been found that the hypothesis of common intersection of the straight lines $\log k$ vs $1 / T$ is rejected at the significance level $\alpha=0.05$, but, within approximate validity of the isokinetic hypothesis the isokinetic relation can be considered to be fulfilled in the given reaction series. The change of the reaction constant ϱ connected with the change of the reaction mechanism shows a statistically significant correspondence with the change of the isokinetic temperature.

Kinetics and mechanism of the non-catalyzed hydrolysis of substituted 3-(N-methyl-carbamoyl)-1,3-diphenyltriazenes

were described in our previous papers ${ }^{1,2}$. The Hammett dependence was also evaluated but without verification of the isokinetic relation.

The problem of calculation of the isokinetic temperature (β) was extensively elaborated by Exner ${ }^{3-9}$. From the computation viewpoint the problem consists in finding such a constant $x_{0}\left(=\beta^{-1}\right)$ in the equation system (1), that the relation (2) is fulfilled in which $x_{i j}\left(=T_{\mathrm{ij}}^{-1}\right)$ and $y_{\mathrm{ij}}\left(=\log k_{\mathrm{ij}}\right)$ are

$$
\begin{gather*}
y_{\mathrm{ij}}=y_{0}+b_{\mathrm{i}}\left(x_{\mathrm{ij}}-x_{0}\right) \tag{1}\\
S=\sum_{i=1}^{n} \sum_{\mathrm{j}=1}^{m_{1}} w_{\mathrm{ij}}\left(y_{\mathrm{ij}}-f_{\mathrm{i}}\left(x_{\mathrm{ij}}, \Theta\right)\right)^{2} / p=\min \tag{2}
\end{gather*}
$$

experimental values of the j-th measurement in the i-th series, x_{0} and y_{0} are coordina-
tes of the common intersection of n straight lines, p is number of degrees of freedom, and f_{i} is defined by the relation (3). The weights w_{ij} in Eq. (2) are determined by the relation (4). Calculation of x_{0} in the system (1) represents a

$$
\begin{gather*}
f_{i}\left(x_{i j}, \widehat{\Theta}\right)=\hat{y}_{0}+\hat{b}_{i}\left(x_{i j}-\hat{x}_{0}\right) \tag{3}\\
w_{i j}=\left(\sum_{i=1}^{n} m_{i}\right) / \sigma_{i j} \sum_{i=1}^{n} \sum_{j=1}^{m_{1}} \sigma_{i j}^{-2} \tag{4}
\end{gather*}
$$

non-linear problem with one non-linear parameter which can be effectively found by one-dimensional optimization and the remaining parameters can be calculated by the method of linear regression. The covariance matrix of the parameters can be defined by the likelihood function L, because it holds that

$$
\begin{equation*}
-\left[\partial^{2} \ln L / \partial \Theta_{\alpha} \partial \Theta_{\beta}\right]^{-1} \tag{5}
\end{equation*}
$$

is the covariance matrix of the parameters ${ }^{10}, \Theta_{\alpha}$ and Θ_{β} representing the individual parameters. Derivative of the likelihood function can be expressed by Eq. (6) in which S is given by Eq. (2).

$$
\begin{equation*}
\partial^{2} \ln L / \partial \Theta_{\alpha} \partial \Theta_{\beta}=-\sum_{i=1}^{\pi} \sum_{\mathrm{j}=1}^{m_{1}} w_{\mathrm{i} j}\left(\partial f_{\mathrm{i}}\left(x_{\mathrm{i} j}, \widehat{\Theta}\right) / \partial \Theta_{\beta}\right)\left(\partial f_{\mathrm{i}}\left(x_{\mathrm{i} j}, \widehat{\Theta}\right) / \partial \Theta_{\beta}\right) / S \tag{6}
\end{equation*}
$$

Shimulis suggested three criteria ${ }^{11,12}$ based on analysis of dispersion variance for statistical evaluation of existence of the isokinetic temperature. These criteria can be summarized in the formula (7), where $v_{1}=n-1, v_{2}=\sum_{i=1}^{n} m_{i}-2 n$.

$$
\begin{equation*}
F\left(v_{1}, v_{2}\right)=v_{2}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(z_{\mathrm{i}}-\bar{z}\right)^{2}\right] / v_{1}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(m_{\mathrm{i}}-2\right) s_{z_{1}}^{2}\right] \tag{7}
\end{equation*}
$$

The first criterion tests whether the straight lines y_{ij} vs x_{ij} intersect, within experimental error, in the point $x_{0}, y_{0}\left(z_{\mathrm{i}}=f_{\mathrm{i}}\left(x_{0}, \widehat{\Theta}\right)\right)$. The second criterion $\left(z_{\mathrm{i}}=f_{\mathrm{i}}(0, \widehat{\Theta})\right)$ and the third criterion $\left(z_{i}=b_{i}\right)$ test whether the straight lines intersect in the point $x_{0}=0$ (an isentropic reaction) or are parallel, because in these cases the isokinetic temperature cannot be determined. Exner ${ }^{5,7}$ approaches this problem in another way, testing whether there is isokinetic temperature in the given experimental set within approximate validity of the isokinetic relation. For this purpose he compares the standard deviations s_{0} (from regression by a family of lines with intersection x_{0}, y_{0}) and s_{00} (sum of standard deviations of the Arrhenius straight lines). Extent of correlation between the experimental data within the isokinetic relation can be evaluated according to the criterion defined by Eq. (8)

Table I
Temperature Dependence of Hydrolysis Rate Constants of Substituted 3-(N-Methylcarbamoyl)--1,3-diphenyltriazenes at pH 3.56

	$I, \mathrm{X}=\mathrm{H}$	$\begin{gathered} T \\ { }^{\circ} \mathrm{C} \end{gathered}$	II, $\mathrm{X}=4-\mathrm{CH}_{3}$		$\begin{gathered} T \\ { }^{\circ} \mathrm{C} \end{gathered}$	III, $\mathrm{X}=4-\mathrm{Cl}$	
${ }^{\circ} \mathrm{C}$	$k, \mathrm{~s}^{-1} \quad s_{\mathrm{k}}, \mathrm{s}^{-1}$		$k, \mathrm{~s}^{-1}$	s_{k}, s^{-1}		$k, \mathrm{~s}^{-}$	$s_{\mathrm{k}}, \mathrm{s}$
25	$5 \cdot 491 \cdot 10^{-4} 6 \cdot 906 \cdot 10^{-6}$	20	$5 \cdot 367 \cdot 10^{-4}$	$1 \cdot 214.10^{-5}$	25	$1 \cdot 867.10^{-4}$	$8 \cdot 131.10^{-6}$
30	$1 \cdot 093 \cdot 10^{-3} 2 \cdot 896 \cdot 10^{-5}$	20	$5 \cdot 032 \cdot 10^{-4}$	$1 \cdot 208.10^{-5}$	25	$1 \cdot 809.10^{-4}$	$4 \cdot 483 \cdot 10^{-6}$
35	$1 \cdot 800 \cdot 10^{-3} 4 \cdot 231 \cdot 10^{-5}$	25	$1 \cdot 048 \cdot 10^{-3}$	$9.770 .10^{-6}$	30	$3 \cdot 910 \cdot 10^{-4}$	$8 \cdot 541.10^{-6}$
45	$5 \cdot 331 \cdot 10^{-3} 1 \cdot 357 \cdot 10^{-4}$	25	$1 \cdot 007.10^{-3}$	$2 \cdot 431.10^{-5}$	35	$6 \cdot 233 \cdot 10^{-4}$	$1 \cdot 103 \cdot 10^{-5}$
50	$8 \cdot 521 \cdot 10^{-3} 2 \cdot 164 \cdot 10^{-4}$	25	$1 \cdot 138 \cdot 10^{-3}$	$3 \cdot 029$. 10^{-5}	35	$6.978 \cdot 10^{-4}$	$8.239 .10^{-6}$
55	$1 \cdot 773 \cdot 10^{-2} 6 \cdot 534 \cdot 10^{-4}$	30	$1 \cdot 660 \cdot 10^{-3}$	3.228. 10^{-5}	40	$1 \cdot 231 \cdot 10^{-3}$	$1.019 .10^{-5}$
60	$2 \cdot 798 \cdot 10^{-2} 1 \cdot 210 \cdot 10^{-3}$	30	$1 \cdot 700 \cdot 10^{-3}$	$3 \cdot 653$. 10^{-5}	40	$1 \cdot 206 \cdot 10^{-3}$	$1.848 \cdot 10^{-5}$
		35	$2 \cdot 489.10^{-3}$	$2 \cdot 465.10^{-5}$	45	$2 \cdot 398 \cdot 10^{-3}$	$5 \cdot 127.10^{-5}$
		35	$2.548 \cdot 10^{-3}$	$2 \cdot 818 \cdot 10^{-5}$	45	$2 \cdot 290 \cdot 10^{-3}$	$5 \cdot 056 \cdot 10^{-5}$
			$4 \cdot 053 \cdot 10^{-}$	1.559 . 10^{-4}			
			$4 \cdot 212.10^{-}$	$7.985 \cdot 10^{-5}$			
$I V, \mathrm{X}=4-\mathrm{Br}$		$V, \mathrm{X}=3-\mathrm{Cl}$			$V I, \mathrm{X}=3-\mathrm{Br}$		
30	$2 \cdot 986 \cdot 10^{-4} 5 \cdot 971 \cdot 10^{-6}$	35	$2 \cdot 447.10^{-4}$	$1 \cdot 330 \cdot 10^{-5}$	35	$2.010 .10^{-4}$	$6 \cdot 119 \cdot 10^{-6}$
30	$2 \cdot 385 \cdot 10^{-4} 5 \cdot 189 \cdot 10^{-6}$	35	$2 \cdot 340 \cdot 10^{-4}$	$1 \cdot 169.10^{-5}$	40	$3 \cdot 833 \cdot 10^{-4}$	$1 \cdot 109 \cdot 10^{-5}$
35	$4 \cdot 928 \cdot 10^{-4} 1 \cdot 215 \cdot 10^{-5}$	40	$4 \cdot 828 \cdot 10^{-4}$	$8.021 .10^{-6}$	40	$4 \cdot 123 \cdot 10^{-4}$	$7 \cdot 098 \cdot 10^{-6}$
35	$4 \cdot 318 \cdot 10^{-4} 4 \cdot 835 \cdot 10^{-6}$	40	4.903. 10^{-4}	1.061. 10^{-5}	45	$7 \cdot 397.10^{-4}$	$1.289 .10^{-5}$
40	$7 \cdot 447 \cdot 10^{-4} 1 \cdot 009 \cdot 10^{-5}$	45	$8 \cdot 492.10^{-4}$	$1 \cdot 126.10^{-5}$	45	$8.060 \cdot 10^{-4}$	$1 \cdot 439.10^{-5}$
45	$1 \cdot 313 \cdot 10^{-3} 2 \cdot 447 \cdot 10^{-5}$	50	$1 \cdot 445 \cdot 10^{-3}$	$2 \cdot 708 \cdot 10^{-5}$	50	$1 \cdot 298 \cdot 10^{-3}$	$1 \cdot 373 \cdot 10^{-5}$
45	$1 \cdot 487 \cdot 10^{-3} 4 \cdot 233 \cdot 10^{-5}$	50	$1 \cdot 560 \cdot 10^{-3}$	$3 \cdot 538 \cdot 10^{-5}$	50	$1 \cdot 426.10^{-3}$	$1.378 \cdot 10^{-5}$
50	$2 \cdot 408 \cdot 10^{-3} 4 \cdot 260 \cdot 10^{-5}$	55	$2 \cdot 792 \cdot 10^{-3}$	$3 \cdot 948 \cdot 10^{-5}$	55	$2.793 .10^{-3}$	$3 \cdot 070.10^{-5}$
50	$2 \cdot 495 \cdot 10^{-3} 3 \cdot 948 \cdot 10^{-5}$	55	$2 \cdot 697.10^{-3}$	$5 \cdot 248 \cdot 10^{-5}$	55	$2 \cdot 603$. 10^{-3}	$4 \cdot 802 \cdot 10^{-5}$
$\begin{array}{r} T \\ { }^{\circ} \mathrm{C} \end{array}$	$V I I, \mathrm{X}=3-\mathrm{F}$	$T$${ }^{\circ} \mathrm{C}$	VIII, $\mathrm{X}=3-\mathrm{CH}_{3} \mathrm{SO}_{2}$		$X I, \mathrm{X}=4 \cdot \mathrm{CN}$		
	$k, \mathrm{~s}^{-1} \quad k_{\mathrm{k}}, \mathrm{s}^{-1}$		k, s	k_{k}, 5	${ }^{\circ} \mathrm{C}$	$k, \mathrm{~s}^{-}$	s_{k},
35	$3 \cdot 162 \cdot 10^{-4} \quad 2 \cdot 585 \cdot 10^{-6}$	40	$2 \cdot 195.10^{-4}$	$1 \cdot 446 \cdot 10^{-6}$	35	$1 \cdot 840 \cdot 10^{-4}$	$1 \cdot 395.10^{-6}$
35	$3 \cdot 698 \cdot 10^{-4} 9 \cdot 508 \cdot 10^{-6}$	40	$2 \cdot 182.10^{-4}$	$1 \cdot 757.10^{-6}$	35	$1 \cdot 851 \cdot 10^{-4}$	$1 \cdot 021.10^{-6}$
40	$4 \cdot 498 \cdot 10^{-4} 8 \cdot 963 \cdot 10^{-6}$	45	$3.743 .10^{-4}$	$2 \cdot 600.10^{-6}$	40	$3 \cdot 620 \cdot 10^{-4}$	$2 \cdot 667.10^{-6}$
40	$4 \cdot 568 \cdot 10^{-4} 1 \cdot 050 \cdot 10^{-5}$	45	$3.768 .10^{-4}$	$3 \cdot 553 \cdot 10^{-6}$	40	$3 \cdot 685.10^{-4}$	$9 \cdot 153 \cdot 10^{-7}$
45	$1 \cdot 047 \cdot 10^{-3} 1 \cdot 302 \cdot 10^{-5}$	50	$7.666 .10^{-4}$	$3.747 .10^{-6}$	45	$5 \cdot 560 \cdot 10^{-4}$	$2 \cdot 292.10^{-6}$
45	$1 \cdot 059 \cdot 10^{-3} 2 \cdot 295 \cdot 10^{-5}$	50	$7 \cdot 475.10^{-4}$	$3.087 .10^{-6}$	45	$6.657 .10^{-4}$	$2 \cdot 208.10^{-6}$
50	$1 \cdot 795.10^{-3} 1 \cdot 775.10^{-5}$	55	$1 \cdot 226.10^{-3}$	$3 \cdot 688.10^{-6}$	50	$1 \cdot 391.10^{-3}$	$6 \cdot 477 \cdot 10^{-6}$
50	$1 \cdot 833 \cdot 10^{-3} 1 \cdot 833 \cdot 10^{-5}$	55	$1 \cdot 245 \cdot 10^{-3}$	$5 \cdot 385.10^{-6}$	50	$1 \cdot 365 \cdot 10^{-3}$	$7.677 .10^{-6}$
55	$2 \cdot 648 \cdot 10^{-3} 5 \cdot 873 \cdot 10^{-5}$	60	$1 \cdot 977.10^{-3}$	$1 \cdot 308 \cdot 10^{-5}$	55	$2 \cdot 323 \cdot 10^{-3}$	$1 \cdot 672 \cdot 10^{-5}$
55	$2 \cdot 817 \cdot 10^{-3} 4 \cdot 577 \cdot 10^{-5}$	60	$1.928 .10^{-3}$	$1.948 \cdot 10^{-5}$	55	$2 \cdot 317.10^{-3}$	$1.803 .10^{-5}$

Table I
(Continued)

$$
\begin{align*}
\psi=\left[\sum_{i=1}^{n} m_{i} \sum_{i=1}^{n}\right. & \sum_{j=1}^{m_{1}} w_{i j}\left(y_{i j}-f_{i}\left(x_{i j}, \hat{\Theta}\right)\right)^{2} /\left(\sum_{i=1}^{n} m_{\mathrm{i}}-n-2\right) . \\
& \left.\cdot \sum_{i=1}^{n} \sum_{\mathrm{j}=1}^{m_{1}} w_{\mathrm{i} j}\left(y_{\mathrm{ij}}-\bar{y}\right)^{2}\right]^{1 / 2}, \tag{8}
\end{align*}
$$

where \bar{y} stands for arithmetic mean. Magnitude of the criterion ψ is judged according to the convention ${ }^{13}$.

EXPERIMENTAL

Synthesis of the compounds studied and the measurements methods were described in the previous papers ${ }^{1,2}$. The measurements were carried at pH 3.56 in phthalate buffer, the temperature in the cell was measured with accuracy of $\pm 0 \cdot 1^{\circ} \mathrm{C}$. The experimental results were treated by the Exner procedure ${ }^{7}$ modified by the use of the effective optimization procedure in a broad temperature range, and the results were complemented with the covariance matrix of parameters. The minimum value of S in Eq. (2) with respect to the parameter x_{0} was searched for within the interval

$$
\begin{equation*}
1000 x_{0} \in\langle-7.00 ; 10.5\rangle \tag{9}
\end{equation*}
$$

which was divided into 0.5 unit sections. In the individual points x_{0}^{k} we calculated the residual sums of squares S_{k} (Eq. (2)), and the point x_{k}^{0} fulfilling the condition (10) was chosen to be

$$
\begin{equation*}
S_{\mathrm{k}}\left(x_{\mathrm{ij}}, x_{0}^{\mathrm{k}}\right)<S_{1}\left(x_{\mathrm{ij}}, x_{0}^{1}\right) ; \quad l=1,2, \ldots, 36 ; \quad l \neq k \tag{10}
\end{equation*}
$$

the centre of a new interval $x_{0}^{\mathrm{k}-1} ; x_{0}^{\mathrm{k}+1}$. In this interval we used the Fibonacci optimization with 35 Fibonacci numbers. The covariance matrix was calculated according to the relations
(6) and (2), the criteria F_{1}, F_{2}, F_{3} were calculated according to Eq. (7), and the criterion ψ was calculated by Eq. (8). The calculations were carried out in the FORTRAN IV language using the ADT 4100 computer for four groups of the substitution derivatives ($I-I X, X-X I I, I-X$, $I-X I I$; Table I) and for different (W) and unit (U) weights.

RESULTS AND DISCUSSION

To test the suggested calculation procedure we used an example from literature ${ }^{7,14}$. The values obtained by us $\left(\beta=-1739 \mathrm{~K}, s_{0}=0.088, s_{00}=0.096, s_{\beta}=623 \mathrm{~K}\right.$,

Table II

Isokinetic Temperatures and Statistical Criteria for Non-Catalyzed Hydrolysis of Substituted 3-(N-Methylcarbamoyl)-1,3-diphenyltriazenes $I-X I I$ in the Series $I-I V$

Series	I_{W}	I_{U}	II_{W}	II_{U}	$\mathrm{III}_{\mathrm{W}}$	$\mathrm{III}_{\mathrm{U}}$	IV_{W}	IV_{U}
n	9	9	3	3	10	10	12	12
$\sum_{\beta, \mathrm{K}} m_{\mathrm{i}}$	85	85	34	34	95	95	119	119
s_{β}, K	501.7	597.4	-186.1	204.8	531.2	618.0	705.9	618.0
F_{1}	61.2	95.0	51.0	28.9	60.5	86.8	193.9	89.9
F_{2}	3.38	4.90	3.15	0.03	3.33	4.99	6.00	7.35
F_{3}	6.88	6.75	4.78	8.22	6.52	6.68	8.04	8.73
$F_{0_{0} 95}$	11.62	10.59	2.46	3.45	11.60	10.99	12.45	12.21
$10^{2} s_{0}$	2.08	2.08	3.34	3.34	2.01	2.01	1.89	1.89
$1 C^{2} s_{00}$	2.76	4.10	2.86	2.82	2.56	3.92	2.93	4.25
$10^{2} \psi$	2.86	4.10	5.51	5.13	2.84	3.81	3.00	3.61
	8.14	9.16	8.69	6.59	6.88	8.66	8.70	9.53

Fig. 1
Dependence of Logarithms of Rate Constants of Non-Catalyzed Hydrolysis of 3--(N-Methylcarbamoyl)-1,3-diphenyltriazenes on the Hammett σ Constants (for numbers see Table I, 13, $X=4-\mathrm{CH}_{3} \mathrm{O}$)
$\left.F_{1}=0.34, F_{2}=1 \cdot 19, F_{3}=23.9\left(F_{0.95}=2.00\right)\right)$ agree well with those given in literature $^{7}\left(\beta=-1740 \mathrm{~K}, s_{0}=0.089, s_{00}=0.096\right)$. The testing criteria show that the intersection of the lines (1) is significant at the significance level $\alpha=0.05$, the value x_{0} being equal to zero with statistical significance at the same significance level (the isentropic reaction).

Table I gives the hydrolysis rate constants of the substituted 3-(N-methylcarba-moyl)-1,3-diphenyltriazenes at various temperatures. The results of the repeated measurements showed the measurement error $\delta=0.04$, and, therefore, for testing the results we chose the significance level $\alpha=0 \cdot 05$. Table II summarizes the results of calculation of isokinetic temperature and statistical criteria arranged into four series. These series were formed on the basis of dependence of logarithm of rate constant of the non-catalyzed hydrolysis of the substrates studied on the Hammett σ constants (Fig. 1) with the aim to verify whether change of the reaction constant ϱ is accompanied by simultaneous change of isokinetic temperature. From Table II it can be seen that none of the series studied is isentropic (the criterion F_{2}). The calculation of isokinetic temperature is meaningless for three substituted derivatives with $\sigma>0.7$ (series II_{U}), because the lines described by Eq. (1) are parallel with statistical significance (criterion F_{3}) at the level $\alpha=0.05$. Hence, these results cannot be used for direct evaluation of differences of the estimates of isokinetic temperatures in the series I and II. The criterion F_{1} in Table II indicates statistical insignificance of existence of intersection of the lines (1) at the significance level $\alpha=0.05$ in the series I, III and IV, although all the other criteria are fulfilled. On the contrary, in none of these series the value s_{00} is significantly greater than δ (the Arr-

Fig. 2
Isokinetic Relation for Non-Catalyzed Hydrolysis of 3 -(N-Methylcarbamoyl)-1,3-diphenyltriazenes

henius relation is obeyed), and also s_{0} is not significantly greater than s_{00}, and thus the isokinetic hypothesis cannot be rejected. In all the cases the correlation can be described as good on the basis of the criterion ψ according to the convention ${ }^{13}$. Within approximate validity of the isokinetic relation it is possible to consider this relation to be fulfilled with the accuracy s_{0} in the studied series. To judge whether the 3 -nitro derivative X has a common intersection with the other derivatives $I-I X$ we used the criterion

$$
\begin{equation*}
t=\left|g_{0}\left(x_{0}, \widehat{\Theta}^{0}\right)-n^{-1} \sum_{\mathrm{i}=1}^{n} g_{\mathrm{i}}\left(x_{0}, \widehat{\Theta}^{\mathrm{i}}\right)\right| \mid\left[\nu_{2}^{-1} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(m_{\mathrm{i}}-2\right) s_{\mathrm{i}}^{2}\right]^{1 / 2}, \tag{11}
\end{equation*}
$$

in which

$$
\begin{equation*}
g_{\mathrm{i}}\left(\hat{x}_{0}, \hat{\Theta}^{\mathrm{i}}\right)=a_{\mathrm{i}}+b_{\mathrm{i}} \hat{x}_{0} \tag{12}
\end{equation*}
$$

means the value of regression function of the i-th line in the point x_{0}, s_{i} is the standard deviation of the assessment g_{i}. The criterion (11) has, under the presumption of validity of the hypothesis tested, t distributions with $v_{2}\left(=\sum_{i=1}^{n+1} m_{i}-2(n+1)\right)$ degrees of freedom. The hypothesis was rejected at the significance level $\alpha=0.05$ in both the calculation with different weights ($t_{\mathrm{w}}=1 \cdot 22, t_{0.95}=1.67$) and that with the same ones ($t_{\mathrm{U}}=1 \cdot 24$). Hence the estimate of the isokinetic temperature calculated with involvement of the derivative X will not statistically differ, and the intermediate derivative X can thus be added to the other derivatives $I-I X$ (series III, Table II). The same criterion (11) was used to test the hypothesis whether also 4-cyano (XI) and 4-nitro (XII) derivatives (which have $\varrho>0$ (Fig. 1) in contrast to the foregoing substrates) give the same regression value at the point x_{0} (determined for the compounds $I-X$) as the mean of the regression values at the point x_{0} of the independent lines $I-X$. The hypothesis was rejected at the significance level $\alpha=0.05$ for the derivative $X I\left(t_{U}=3.14, t_{0.95}=1 \cdot 67\right)$ in calculation with the same weights, but it was not rejected for the same derivative with different weights ($t_{\mathrm{w}}=1.09$). For the derivative XII the hypothesis (11) was rejected at the significance level $\alpha=0.05$ in the both cases ($t_{\mathrm{w}}=5.24, t_{\mathrm{U}}=5.79$). From these results it can be concluded that the derivatives $X I$ and $X I I$ with the reaction constant $\varrho>0$ have different isokinetic temperature from that of the derivatives $I-X$. According to expectation the isokinetic temperature is characteristical of one type of mechanism and rate-limiting step in a given substituent series. Change of the isokinetic temperature corresponds with change in linearity of the Hammett relation.

From the point of view of classification of reaction series according to relation between the activation parameters ${ }^{4}$ the hydrolysis of the studied compounds represents the most common case of compensation $\left(\beta>T_{\text {exp }}\right)$. The isokinetic relation is illustrated in Fig. 2 (series III).

REFERENCES

1. Pytela O., Večeřa M., Vetešník P.: This Journal 45, 1269 (1980).
2. Pytela O., Večeřa M., Vetešník P.: This Journal 45, 2108 (1980).
3. Exner O.: Nature (London) 201, 488 (1964).
4. Exner O.: This Journal 29, 1094 (1964).
5. Exner O.: This Journal 37, 1425 (1972).
6. Exner O.: Chem. Listy 67, 135 (1973).
7. Exner O., Beránek V.: This Journal 38, 781 (1973).
8. Exner O.: This Journal 38, 799 (1973).
9. Wold S., Exner O.: Chem. Scripta 3, 5 (1973).
10. Bard Y.: Nonlinear Parameter Estimation and Programing IBM. New York, Scientific Center 1967.
11. Shimulis V.: Kinet. Katal. 10, 1026 (1968).
12. Dzhuntini B., Shimulis V.: Kinet. Katal. 15, 210 (1974).
13. Exner O.: This Journal 31, 3222 (1966)
14. Johnson C. D., Katritzki A. R., Shapiro S. A.: J. Amer. Chem. Soc. 91, 6654 (1969). Translated by J. Panchartek.
